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ABSTRACT

Rift Valley fever virus (RVFV) causes recurrent insect-borne epizootics throughout the African continent, and infection of hu-
mans can lead to a lethal hemorrhagic fever syndrome. Deep mutagenesis of haploid human cells was used to identify host fac-
tors required for RVFV infection. This screen identified a suite of enzymes involved in glycosaminoglycan (GAG) biogenesis and
transport, including several components of the cis-oligomeric Golgi (COG) complex, one of the central components of Golgi
complex trafficking. In addition, disruption of PTAR1 led to RVFV resistance as well as reduced heparan sulfate surface levels,
consistent with recent observations that PTAR1-deficient cells exhibit altered Golgi complex morphology and glycosylation de-
fects. A variety of biochemical and genetic approaches were utilized to show that both pathogenic and attenuated RVFV strains
require GAGs for efficient infection on some, but not all, cell types, with the block to infection being at the level of virion attach-
ment. Examination of other members of the Bunyaviridae family for GAG-dependent infection suggested that the interaction
with GAGs is not universal among bunyaviruses, indicating that these viruses, as well as RVFV on certain cell types, employ ad-
ditional unidentified virion attachment factors and/or receptors.

IMPORTANCE

Rift Valley fever virus (RVFV) is an emerging pathogen that can cause severe disease in humans and animals. Epizootics
among livestock populations lead to high mortality rates and can be economically devastating. Human epidemics of Rift
Valley fever, often initiated by contact with infected animals, are characterized by a febrile disease that sometimes leads to
encephalitis or hemorrhagic fever. The global burden of the pathogen is increasing because it has recently disseminated
beyond Africa, which is of particular concern because the virus can be transmitted by widely distributed mosquito species.
There are no FDA-licensed vaccines or antiviral agents with activity against RVFV, and details of its life cycle and interac-
tion with host cells are not well characterized. We used the power of genetic screening in human cells and found that RVFV
utilizes glycosaminoglycans to attach to host cells. This furthers our understanding of the virus and informs the develop-
ment of antiviral therapeutics.

Rift Valley fever virus (RVFV) is a member of the Bunyaviridae
family of viruses that cause emerging infections that threaten

both human and livestock populations on several continents (1).
Bunyaviruses have a tripartite, negative-sense RNA genome and
are frequently transmitted by insects (1). RVFV can be transmit-
ted by mosquitoes or by exposure to infected tissues and body
fluids and is considered endemic in much of Africa (2). In hu-
mans, RVFV can cause an acute fever leading to complications
such as kidney failure and, in about 1% of cases, a lethal hemor-
rhagic fever (3, 4). In addition, RVFV spreads rapidly across in-
fected herds of livestock and can cause significant mortality in
infected animals (5, 6).

We took a genetic approach to identify host factors that are
required for RVFV infection in vitro by employing an insertional
mutagenesis screen using HapI cells, a human haploid cell line. By
utilizing a retroviral gene trap, gene-inactivating insertion sites
can be efficiently mapped with deep sequencing technology (7).
This approach has successfully uncovered host factors required by
a variety of pathogens, including viruses, bacteria, and bacterial
toxins (8–12). When gene trap-mutagenized HapI cells were chal-
lenged with RVFV and the surviving cells were analyzed, there was
an enrichment of sites of insertion into multiple genes involved in

glycosaminoglycan (GAG) biosynthesis as well as genes for sub-
units of the cis-oligomeric Golgi (COG) complex and PTAR1. We
confirmed the requirement for heparan sulfate during infection
with RVFV isolates with a variety of genetic and biochemical per-
turbations, consistent with the findings from de Boer et al. (13).
We now show that the dependency on heparan sulfate during
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RVFV infection is consistent across a representative panel of pri-
mary RVFV isolates and, by employing vesicular stomatitis virus
(VSV)-based pseudovirions, that utilization of GAGs by RVFV
during infection occurs at the step of entry. We were able to iden-
tify, using a quantitative binding assay, virus attachment to be the
specific entry step affected. However, the dependence of RVFV on
GAGs for efficient infection was cell type dependent. Surfen (a
small-molecule antagonist of heparan sulfate) inhibited infection
of HapI and SNB-19 cells by replication-competent RVFV, yet
surfen did not impact infection of several other cell lines by RVFV,
even though it efficiently blocked infection by herpes simplex vi-
rus 1 (HSV-1), a virus that depends upon heparan sulfate for
efficient infection in vitro. Thus, while GAG interactions do sig-
nificantly enhance RVFV infection in some contexts, other virus
attachment factors must also exist and/or RVFV utilizes GAG
structures that do not efficiently interact with surfen.

MATERIALS AND METHODS
Cells and viruses. HapI cells (7) and the derived mutant cell lines were
grown in Iscove’s modified Dulbecco’s medium (IMDM) supplemented
with 10% (vol/vol) fetal bovine serum (FBS), 2 mM L-glutamine, 1 mM
sodium pyruvate, 10 units/ml penicillin, and 100 �g/ml streptomycin.
HEK 293T, Vero E6, C6/36, L, and sog9 cells (a generous gift from Frank
Tufaro) were grown in Dulbecco’s modified Eagle medium (DMEM) sup-
plemented with 10% (vol/vol) FBS, 2 mM L-glutamine, 10 units/ml pen-
icillin, and 100 �g/ml streptomycin.

The following strains of RVFV were used in this study: MP-12, ZH-
501, Kenya 9800523, and Kenya 2007002444. MP-12 was propagated in
MRC-5 cells (at the University of Pennsylvania) or Vero E6 cells (at
USAMRIID), while the ZH-501 and the Kenyan strains were propa-
gated in Vero E6 cells. Viral titers on Vero E6 cells were determined by
plaque assay. Crimean-Congo hemorrhagic fever virus (CCHFV) strain
IbAr10200 was propagated in CER cells, and viral titers on CER cells
were determined. HSV-1 strain k-GFP (a generous gift from Nigel Fraser,
University of Pennsylvania) was propagated in Vero E6 cells. Studies using
RVFV ZH-501 were conducted in a biosafety level 3 laboratory at
USAMRIID, whereas infections using the Kenyan RVFV strains and
CCHFV were performed in a biosafety level 4 laboratory at USAMRIID.
Appropriate safety protocols were followed, and personal protective
equipment was worn while conducting experiments in the high-contain-
ment laboratories. The generation of PTAR1-deficient HapI cells was de-
scribed before (14).

Insertional mutagenesis. HapI cells were mutagenized with a retro-
viral gene trap as described in reference 11 and exposed to strain MP-12.
Surviving clones were expanded for genomic DNA isolation. Subse-
quently, gene trap insertion sites were amplified using an inverse PCR,
submitted for parallel sequencing (Illumina HiSeq 2000), and aligned to
the human genome (hg18) (10). Genes significantly enriched for gene-
trap insertions compared to the sequences of an unselected control cell
population were identified using a one-sided Fisher’s exact test as de-
scribed in reference 11.

RVFV pseudovirion production. To assess the specific role of GAGs
in RVFV attachment and entry, as opposed to downstream replication
events, we used a VSV pseudovirion system (15, 16) in which the VSV
glycoprotein gene G was deleted from the viral genome (VSV�G) and
replaced with a reporter gene, either Renilla luciferase (VSV�G-rLuc) or
red fluorescent protein (VSV�G-RFP). To generate VSV�G pseudoviri-
ons possessing RVFV glycoproteins (or those of other viruses), the glyco-
proteins were provided in trans via an expression vector to cells trans-
duced with the VSV�G core. HEK 293T cells seeded in 10-cm2 plates were
transfected with pCAGGS RVFV ZH-548 M using the Lipofectamine 2000
reagent (Invitrogen) according to the manufacturer’s instructions. This
construct is codon optimized for expression in human cells and contains
only the coding region of the M segment starting at the fourth ATG start

codon, which omits the NSM coding region. At between 16 and 20 h after
transfection, cells were transduced with VSV�G pseudovirions bearing
VSV G. After adsorption of pseudovirions for 1 h, cells were carefully
rinsed four times with warm phosphate-buffered saline (PBS) containing
calcium and magnesium, and then the medium was replaced with com-
plete DMEM supplemented with 25 mM HEPES. Cell culture superna-
tants were collected 24 h later, clarified by low-speed centrifugation for 30
min at 4°C, filtered (pore size, 0.45 �m), and then aliquoted for storage at
�80°C. Andes virus (ANDV) and Hantaan virus (HTNV) pseudovirions
were generated in the same fashion.

Virus infections. To compare the ability of diverse RVFV strains or
CCHFV to infect HapI cells and the derived mutant cell lines, we utilized
a high-content imaging-based infection assay. Each cell line was seeded at
a density of 1 � 104 cells per well in Greiner black well, clear-bottom
96-well plates. At 24 h after seeding of the cells, the culture medium was
removed and the cells were infected with viruses diluted in complete
IMDM. The virus inocula were not washed off and the plates were incu-
bated at 37°C until approximately 18 to 20 h postinfection. At this point,
the cell culture medium was removed from the cells and the plates were
immersed in 10% neutral buffered formalin for 24 h to fix the cells and
render virus noninfectious prior to removal from the high-containment
laboratories.

Prior to immunostaining for viral antigens, residual formalin was re-
moved from the plates, and they were then rinsed extensively with phos-
phate-buffered saline (pH 7.4). The cells were permeabilized for 15 min
with a solution of 0.1% (vol/vol) Triton X-100 in PBS, and then the per-
meabilization buffer was rinsed away by additional PBS washes. The cells
were blocked for at least 1 h using a 3% (wt/vol) solution of bovine serum
albumin in PBS. Purified monoclonal antibodies specific for RVFV N
(R3-1D8) or CCHFV N (9D5-1-1A) were diluted 1:1,000 in blocking
buffer and then added to the cells for 1 h, followed by extensive washing
with PBS. Anti-mouse immunoglobulin Alexa Fluor 568-labeled second-
ary antibody was diluted 1:2,000 in blocking buffer and then added to the
cells for 1 h, followed by extensive washing in PBS. The cells were then
counterstained with a solution of Hoechst 33342 (nuclei) and HCS Cell-
Mask deep red stain (total cell), each of which was diluted 1:10,000 in PBS.
This counterstain solution was maintained on the plates during high-
content imaging.

Automated image acquisition was performed using an Operetta
high-content imaging system. Three exposures (one for each of the
fluorophores) in five separate fields were acquired in each well using a
20� air objective and a Peltier cooled 1.3-megapixel charge-coupled-
device camera. The fluorophores were illuminated using a 300-W xe-
non arc light source and excitation (EX) and emission (EM) filters for
the following: Alexa Fluor 568 (EX/EM), Hoechst 33342 (EX/EM), and
HCS CellMask deep red (EX/EM). Image segmentation and analysis
were performed using Harmony (version 3.0) software and standard
scripts. These algorithms were used to first delineate nuclear and cell
boundaries and then identify viral antigens by Alexa Fluor 568 stain-
ing. To calculate percent infection per image field, the number of cells
exhibiting an Alexa Fluor 568 mean fluorescence intensity greater than
the mean intensity for uninfected control wells was divided by the total
cell number defined by Hoechst 33342 nuclear staining. For each well,
the Harmony software reported the mean percent infection of the five
fields. On average, 1,500 to 5,000 cells were analyzed per well. In each
independent experiment, at least 4 individual wells were analyzed for
each cell line.

Infections with VSV�G-RFP pseudovirions or HSV-1 were carried
out at a low volume for 1 h at 37°C, after which complete DMEM or
IMDM was added to the wells. Twenty-four hours later, the cells were
trypsinized, fixed in 2% paraformaldehyde and then analyzed for RFP (for
VSV�G pseudovirions) or green fluorescent protein (GFP) (for HSV-1)
expression by fluorescence-activated cell sorting (FACSCalibur flow cy-
tometer; BD Biosciences). For infections in the presence of surfen (5 �M;
Sigma), dextran sulfate (5 �g/ml, 5 kDa; Sigma), or heparinase I (3 U/ml;
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Sigma), cells were pretreated for 1 h and, in the case of surfen and dextran
sulfate, kept in the presence of drug for the duration of the infection. For
soluble GAG competition experiments, heparin (10 and 100 �g/ml; Fisher
BioReagents) and heparan sulfate (10 and 100 �g/ml; Iduron) were pre-
incubated with HSV-1 or MP-12 at 25°C for 1 h. The virus and GAG
solution was then allowed to adsorb onto cells for 1 h at 37°C, after which
it was rinsed 3 times with PBS containing calcium and magnesium and
cells were refed with fresh medium that did not contain either virus or
GAGs. Infections were then harvested at 8 to 10 h postinfection (hpi), and
percent infection was scored by flow cytometry, looking for either intra-
cellular staining of the N protein (for MP-12) or expression of the GFP
reporter protein (for HSV-1). For pseudovirion neutralization studies,
RVFV and severe acute respiratory syndrome (SARS) coronavirus anti-
sera (a generous gift from Stuart Nichol, Centers for Disease Control and
Prevention) were preincubated with pseudovirions at the indicated dilu-
tions for 30 min at 37°C. The linear range of the assay was determined by
performing serial 10-fold dilutions of each virus stock on each target cell
type and for each detection method used. Infection assays were typically
linear over at least a 2-log-unit range of virus dilutions, with the virus
inoculum being adjusted to achieve infection levels of between 1 and 30%.

RVFV binding assay. Virus was diluted in DMEM (Gibco) and added
to HapI cells and the derived mutant cell lines for 1 h at 37°C. The cells
were then washed four times with PBS, and total RNA was isolated from
the cells using a Qiagen RNeasy minikit. RNA was quantified by measur-
ing the absorbance at 260 nm, and first-strand cDNA was generated from
1.5 �g of total RNA using a SuperScript VILO cDNA synthesis kit (Invit-
rogen) according to the manufacturer’s instructions. Primers specific to
the MP-12 L segment (forward L segment primer 5=-TGAGAATTCCTG
AGACACATGG-3=; reverse L segment primer 5=-ACTTCCTTGCATCA
TCTGATG-3=) were purchased from Invitrogen, and a 6-carboxyfluores-
cein/MGB probe specific to the MP-12 L segment with the sequence 5=-
CAATGTAAGGGGCCTGTGTGGACTTGTG-3= was purchased from
Applied Biosystems. Reverse transcription-PCR (RT-PCR) was then per-
formed using an ABI 7500 real-time PCR system (Applied Biosystems)
with the following conditions: (i) denaturation at 95°C for 20 s and (ii) 40
cycles of PCR amplification with denaturation at 95°C for 3 s and anneal-
ing and extension at 60°C for 30 s. Data were analyzed using the ��CT

threshold cycle (CT) method by calculating the change in gene expression
normalized to that of GAPDH (glyceraldehyde-3-phosphate dehydroge-
nase) as a housekeeping gene (17).

Statistical analysis. Statistical significance was calculated using a two-
tailed, one-sample t test by comparing the fold changes to the hypothetical
value of 1 in Prism software (version 5.0a; GraphPad Software). P values
were not reported for conditions where only two biological replicates were
performed.

RESULTS
An insertional mutagenesis screen for RVFV host factors in a
human haploid cell line. To identify the host factors needed for
RVFV infection, 1 � 108 HapI cells were mutagenized using a
retroviral gene trap vector (11). Subsequently, mutagenized cells
were infected with the cytotoxic RVFV MP-12 strain and the sur-
viving cells were expanded as a polyclonal cell population. Follow-
ing isolation of genomic DNA, gene trap insertion sites were se-
quenced and aligned to the human genome. Subsequently, the
retroviral insertions within genes in the virus-resistant population
were counted and compared to the number of insertions within
the same gene in an unselected cell population (11). Genes signif-
icantly enriched (P � 0.001) for insertions in the virus-selected
cell population were identified (Fig. 1A). These contain multiple
genes encoding enzymes required for synthesis of glycosamino-
glycans, including the four enzymes needed for the tetrasaccharide
linkage region (XYLT2, B4GALT7, B3GAT3, and B3GALT6) (18–
23), two enzymes involved in proteoglycan chain elongation

(EXT1 and EXT2) (24), and the enzyme that catalyzes both N-
deacetylation and N-sulfation during the biosynthesis of heparan
sulfate (NDST1) (25). Genes required for the synthesis (UXS1,
UGDH) or transport (SLC35B2) of critical moieties for heparan
sulfate chain formation (26–28) were also enriched in cells resis-
tant to RVFV infection (Fig. 1A and B). In addition to genes di-
rectly involved in heparan sulfate biosynthesis, several subunits of
the conserved oligomeric Golgi (COG) complex (COG1, COG2,
COG3, COG4, COG5, COG7, COG8) (29) were identified from
the screen. It is known that perturbation of the COG complex
attenuates O-linked glycosylation by impairing Golgi complex
function (29, 30). Another hit in this screen encoded UNC50, a
Golgi complex-resident transmembrane protein that plays a role
in nicotinic acetylcholine receptor trafficking in Caenorhabditis
elegans (31). Finally, this screen identified the gene for prenyl-
transferase alpha subunit repeat containing 1 (PTAR1) to be
important for RVFV infection. PTAR1 was previously shown to
affect glycosylation (11), possibly by influencing vesicular traffick-
ing through prenylation of Rab GTPases (14, 32). Although genes
involved in vesicular trafficking could represent more direct inter-
actions with RVFV, the overlap of these results with those from a
screen performed for cell surface GAG expression (11) suggests a
function for these genes in the presentation of glycans at the cell
surface.

GAGs are important for RVFV infection. Because the major-
ity of genes identified in our screen pertained to GAG synthesis,
we first focused on elucidating the role of GAGs during RVFV
infection. We were able to obtain single-cell clones of gene-
trapped B3GAT3 (B3GAT3GT) and B4GALT7 (B4GALT7GT) and
exposed these cells to the MP-12 strain of RVFV. As shown in Fig.
2A, these cells were markedly resistant to MP-12 infection. Impor-
tantly, reintroduction of the respective cDNAs completely re-
stored sensitivity to virus infection, indicating that the observed
resistance phenotype can be solely attributed to the gene-trapped
loci (Fig. 2A). To determine whether the synthesis of the O-linked
tetrasaccharide linker was required for RVFV infection, we pro-
duced a B3GAT3GT cell line stably expressing an enzymatically
inactive point mutant of GlcAT-I (D194A/D195A) (33). As with
the B3GAT3GT cells stably expressing an empty vector construct,
introduction of this enzymatically inactive form of GlcAT-I into
B3GAT3GT cells did not rescue MP-12 infection (Fig. 2B).
B4GALT7 encodes the �-1,4-galactosyltransferase GalT-I, which
catalyzes the enzymatic step immediately upstream of the �-1,3-
galactosyltransferase reaction in the synthesis of the GAG linker
(Fig. 1B). As with the B3GAT3GT cell panel, MP-12 infection also
required a catalytically active form of GalT-I (Fig. 2B), further
suggesting that RVFV is dependent upon GAGs for efficient infec-
tion.

For some viruses, the requirement for GAGs for infection of
cells in culture is a trait acquired during in vitro passaging, often
leading to attenuation (34–36). To determine whether this was the
case with RVFV, we infected the B3GAT3GT and B4GALT7GT cell
panels with three pathogenic strains of RVFV: ZH-501, Kenya
9800523 (1998), and Kenya 2007002444 (2007). We found that
infection by these primary RVFV strains was also strongly inhib-
ited in cells lacking functional GlcAT-I and GalT-I. Infection was
rescued by expression of the wild-type construct but not the en-
zymatically inactive constructs (Fig. 2B). The dependence of pri-
mary RVFV strains upon these enzymes indicates that the require-
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ment of GAGs for viral infection is not due to cell culture adaption
or attenuation.

To further test the hypothesis that RVFV infection requires
GAGs, we used various GAG perturbants. The small molecule
surfen binds to negatively charged GAG species on the cell
surface (37). Infection of HapI cells in the presence of surfen
led to a 10-fold reduction of MP-12 infection but not vesicular
stomatitis virus (VSV) infection (Fig. 3A). Infection of the
HapI cells by herpes simplex virus 1 (HSV-1), which is known
to utilize heparan sulfate for attachment, was decreased to lev-
els close to background levels by the addition of surfen. Enzy-
matic removal of cellular heparan sulfate with heparinase also
greatly attenuated MP-12 infection (Fig. 3A). Since GAGs are
highly negatively charged, nonspecific electrostatic effects
could facilitate the interaction between RVFV surface glyco-
proteins and cellular GAGs. To address this issue, we infected
HapI cells in the presence of dextran sulfate, a biologically
inert, negatively charged carbohydrate polymer. In contrast to
HSV-1, the presence of dextran sulfate had little impact on
MP-12 infection (Fig. 3A), suggesting that the interaction with
cellular GAGs has some degree of specificity.

Differential requirement for GAGs among Bunyaviridae
family members. To examine whether the interaction of RVFV
with GAGs was unique among bunyaviruses, we infected the

B3GAT3GT and B4GALT7GT cell panels with pathogenic, replica-
tion-competent Crimean-Congo hemorrhagic fever virus (CCHFV)
and VSV pseudovirions bearing the Andes or Hantaan virus gly-
coproteins. CCHFV is a member of the Nairovirus genus, and both
Andes and Hantaan viruses are members of the Hantavirus genus,
which are further subdivided into New World (Andes virus) and
Old World (Hantaan virus) hantaviruses (38, 39). Interestingly,
Hantaan virus pseudovirions required catalytically active GlcAT-I
and GalT-I for efficient infection of HapI cells, while Andes virus
pseudovirions did not (Fig. 3B). Infection with CCHFV was re-
duced 2-fold when B3GAT3 or B4GALT7 were absent (Fig. 3B).
Thus, the role of GAGs during infection by other members of the
Bunyaviridae family varies.

RVFV utilizes at least one surfen-resistant cellular factor in
vitro. We next sought to characterize the role of GAGs during
MP-12 infection of different cell lines using surfen as an inhibitor
of GAG function. We observed that surfen inhibited MP-12 infec-
tion in SNB-19 cells, a glioblastoma cell line, but did not inhibit
MP-12 infection in HEK 293T or mouse L cells, a mouse epithe-
lium-derived cell line (Fig. 4A), or in Vero cells (data not shown).
As a positive control for surfen activity, infection by HSV-1 was
strongly inhibited in all cells (Fig. 4A). As an alternative means of
examining GAG utilization in L cells, we also tested MP-12 infec-
tion in sog9 cells, which are clonal isolates of L cells that are defec-
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tive in the EXT1 gene (40). EXT1 is responsible for polymerizing
disaccharide subunits from the nascent tetrasaccharide linker and
was identified in our screen as being important for RVFV infec-
tion of HapI cells (Fig. 1B). In contrast to infection by HSV-1,
infection by MP-12 was unaffected by the loss of GAGs in sog9
cells (Fig. 4B). To further examine the variance of this GAG-de-
pendent phenotype across cell types, we preincubated RVFV or
HSV-1 with either heparin, heparan sulfate, chondroitin sul-
fate, or dextran sulfate for 1 h prior to infection of a panel of
cell lines, including HEK 293T, A549, HeLa, Vero, and (with
RVFV only) C6/36 cells, in addition to the HapI cells. Heparin
and heparan sulfate inhibited infection of both RVFV and
HSV-1 on HEK 293T, A549, HapI, and HeLa cells by at least
2-fold but not on Vero cells, an African green monkey cell line,
or of C6/36 cells, an Aedes albopictus cell line (Fig. 4C). Similar
results were obtained with dextran sulfate, whereas preincubation
with chondroitin sulfate had only a very modest effect on the four
human cell lines and no effect on the Vero and C6/36 cells (data
not shown). Since the composition of GAGs varies between cell
types, this suggests that the GAG species that facilitate RVFV in-

fection may not be ubiquitously expressed. Alternatively, as is the
case with HSV-1, another entry factor may also be able to com-
pensate for the lack of GAGs on some cell types (41). An endocy-
tosis-mediating receptor(s) for RVFV has not been identified, and
these data suggest that multiple entry factors are likely involved in
RVFV infection and that their relative importance may vary be-
tween cell types.

GAGs are important for RVFV entry and binding. Based on
the results of the blocking experiments with surfen and the fact
that many viruses utilize GAGs for cellular attachment, we hy-
pothesized that GAGs facilitate efficient entry by enhancing bind-
ing of RVFV to HapI cells. To examine this, we took advantage of
the VSV pseudovirion system that has been successfully employed
for other members of the Bunyaviridae family (16). The RVFV
surface glycoproteins GN and GC are provided in trans to replica-
tion-incompetent vesicular stomatitis virus lacking its glycopro-
tein (VSV�G). To validate the antigenic specificity of RVFV pseu-
dovirions, we pretreated RVFV pseudovirions with an antiserum
against RVFV or the severe acute respiratory syndrome (SARS)
virus. Infection by RVFV pseudovirions but not those bearing the
VSV G protein was inhibited in the presence of the RVFV antisera
(Fig. 5A). Infection by RVFV pseudovirions was also sensitive to
lysosomotropic agents (data not shown), consistent with the re-
quirement for acidic endosomal pH for infection with RVFV and
other members of the Bunyaviridae family (42–45). We then in-
fected the B3GAT3GT and B4GALT7GT cell panels with both RVFV
and VSV pseudovirions that express red fluorescent protein
(RFP). As with replication-competent RVFV, infection with
RVFV pseudovirions required catalytically active GlcAT-I and
GalT-I (Fig. 5B). In contrast, infection with pseudovirions bearing
the VSV G protein was relatively unaffected, thus directly impli-
cating GAGs in RVFV entry.

To measure RVFV virion binding, we employed a quantitative
reverse transcription-PCR (qRT-PCR) assay that detects RVFV L
gene copies. We first confirmed the linear range of our assay by
diluting MP-12 on HapI cells and measuring relative MP-12 bind-
ing and found that virus binding increased linearly with virus
input over a 3-log-unit range (data not shown). When this assay
was applied to the B3GAT3GT and B4GALT7GT cell panels, MP-12
binding strongly correlated with the presence of catalytically ac-
tive GlcAT-I and GalT-I (Fig. 6). To confirm the role of GAGs in
facilitating RVFV binding, we also measured the effect of surfen
on RVFV binding. Consistent with its role in infection, surfen also
blocked RVFV binding to a similar degree (Fig. 6). Taking these
data together, we conclude that the deficiency in RVFV infection
in the absence of GAGs is due to a defect at the level of virion
attachment.

PTAR1 deficiency attenuates heparan sulfate expression and
confers resistance to RVFV infection. HapI cells lacking a func-
tional PTAR1 (14) were largely resistant to RVFV infection, and
this phenotype could be corrected by reintroduction of wild-type
PTAR1 cDNA (Fig. 7A), indicating that the virus resistance phe-
notype was caused by the loss of PTAR1. In line with previous
observations (11, 14), PTAR1-deficient cells showed a marked de-
crease in cell surface heparan sulfate abundance, as measured by
flow cytometry (Fig. 7B). Similar to the virus resistance pheno-
type, heparan sulfate deficiency, too, could be corrected by com-
plementation with wild-type PTAR1 cDNA (Fig. 7A and B). Con-
sidering the requirement of heparan sulfate for RVFV infection, it
seems plausible that improper presentation of heparan sulfate at
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the cell surface is responsible for the observed virus resistance of
PTAR1-deficient cells. Thus, our screen has identified host factors
required for RVFV infection. These factors are involved in various
steps of the heparan sulfate biosynthesis pathway and include
PTAR1, which constitutes a novel RVFV host factor affecting
heparan sulfate biogenesis.

DISCUSSION

Cell surface carbohydrates can affect virus entry at the stage of
virion attachment, but the importance of this interaction varies
among viruses and cells. For example, sialic acid is thought to
be sufficient for influenza virus attachment and entry, while the
role of GAGs during HSV-1 entry is more complex (41, 46, 47).
The herpesviruses are thought to first engage heparan sulfate
on the surface of cells before engaging specific receptors (48).
Heparan sulfate greatly facilitates HSV-1 attachment and in-
fection under many conditions but is not essential for infection
in all contexts (41, 49). For example, CHO cell mutants defi-
cient in GAG synthesis can be rendered permissive by express-

ing either of the HSV-1 entry receptors nectin-1 (PVRL1) or
HVEM (TNFRSF14) (50). The expression levels of viral recep-
tors can therefore determine whether GAGs are required for
efficient viral entry.

The cellular receptor(s) for RVFV is currently not known,
and since a nonpermissive cell line is yet to be described, it is
possible that more than one molecule may serve as a receptor
for RVFV. The C-type lectin DC-SIGN has been shown to pro-
mote the binding and internalization of RVFV on dermal den-
dritic cells, although this protein is not expressed in most of the
tissues which the virus has been shown to infect (51). A ge-
nome-wide RNA interference screen performed by Hopkins
and colleagues did not identify glycosaminoglycans among
their list of genes that impacted RVFV infection (52). We have
shown that several perturbations of GAGs inhibited RVFV en-
try and attachment on some cell types, but the relative contri-
bution of other RVFV entry factors remains unknown. Because
we observed differential sensitivities of RVFV to surfen, it is
possible that the requirement for GAGs across cell types is a
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function of the relative expression levels of an uncharacterized
RVFV receptor(s), GAG structures to which surfen binds inef-
ficiently, or unidentified attachment factors. Indeed, the com-
position of cellular GAGs between cells is highly variable (53).
While heparan sulfate is the best-studied variant, there are at
least four other species, each consisting of a unique disaccha-
ride unit. Several enzymes are involved in modifying the dif-
ferent glycan side chains following polymerization. For exam-
ple, HSV-1 interacts with 3-O-sulfated heparan sulfate, which
is catalyzed by the 3-O-sulfotransferase family of enzymes (49).
Our data suggest that RVFV may require a specific enzymatic
variant of a GAG species or cellular proteoglycan. Further work
is needed to elucidate the role of specific GAG-modifying en-
zymes and cellular glycoproteins during RVFV infection.

Heparan sulfate has previously been implicated as playing a
role in RVFV infection. A study by de Boer et al. employed a
replication-incompetent virus-like particle (VLP) system and
found that CHO cells with genetic deficiencies in GAG synthesis
were highly resistant, though not immune, to RVFV infection

(13). This is in line with our observation that HapI cells incapable
of producing GAGs are approximately 10-fold more refractory to
RVFV infection than their parental (wild-type) HapI cells. In-
fection by Toscana virus, another member of the genus Phlebo-
virus of the family Bunyaviridae, has been shown to be inhibited by
bovine lactoferrin through competition for GAGs on the cell sur-
face (54). These results and our finding that the importance of
GAGs and heparan sulfate for RVFV infection exhibited cell type
dependence suggest that these molecules serve as virus attachment
factors that can enhance but that are not absolutely required for
virus infection and therefore do not represent indispensable viral
receptors.

By employing RVFV-VSV�G pseudovirions and an RVFV
binding assay, we definitively linked GAGs to RVFV entry and,
more specifically, to virus binding. It remains to be determined
whether the impact of heparan sulfate on RVFV infection of some
cell types reflects the inefficiencies of cell-free virus attachment in
vitro or whether these interactions are important in vivo as well,
though the fact that primary RVFV strains behaved similarly to
the MP-12 vaccine strain shows that these interactions are not the
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result of in vitro virus adaptation. Interestingly, the tissue tropism
of adeno-associated virus 2 (AAV2) to the liver and kidney, organs
in which RVFV also establishes productive infection, is exquisitely
linked to interactions with GAGs (55–58). Infections with RVFV
in pregnant livestock are especially devastating, and pathological
studies of infected pregnant livestock reported extremely high vi-
rus titers in the placenta, an organ whose cells express high levels
of surface GAGs (59, 60). Interactions with placental GAGs may
explain the mechanism by which RVFV localizes to the placenta
from the bloodstream.

The haploid genetic screen utilized here identified multiple
genes involved in GAG synthesis or transport, including PTAR1.
Whereas we cannot formally exclude the possibility that PTAR1
affects virus susceptibility by other means, it is most likely also
involved in mediating GAG-dependent viral entry. Cells deficient
for PTAR1 displayed decreased levels of heparan sulfate at their
cell surface, which is in agreement with the observations obtained
with cells with PTAR1 mutations in previous genetic screens (11,
14). Additional experiments examining the precise role of PTAR1
in heparan sulfate biogenesis and trafficking are needed to shed
light on the mechanism of PTAR1-dependent RVFV infection.
Finally, the ability of this screening approach to identify additional
host factors that are important for RVFV infection may be en-
hanced by employing cell types where virus attachment occurs in
a GAG-independent manner.

The interaction of primary pathogenic RVFV isolates with
GAGs suggests that this interaction might be an attractive phar-
macological target in humans or other animals. Heparan sulfate
has indeed been shown to be important in human papillomavirus
infection of mouse female genital tracts (61), and administering
anti-heparan sulfate peptides as a prophylactic eye drop was
shown to inhibit the spread of HSV-1 in the mouse cornea (62,
63). Although we need to further characterize the exact role of
GAGs during RVFV infection in vitro and in vivo, our current
study suggests that disruption of virus-GAG interactions could be
a viable antiviral therapy or prophylactic measure.
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